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Exactly solvable one-dimensional model of resonance
energy transfer
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Departments of Physics and Mathematics & Computer Science, Clarkson University, Potsdam,
New York 13699-5815, USA

Received 5 September 1995

Abstract. The dynamics of two atoms coupled to the vacuum radiation field is investigated
within the framework of a one-dimensional model in the resonance dipole approximation. The
exact solution of the resonance energy transfer problem is obtained. A many-atom generalization
of the model is also discussed.

1. Introduction

In this article the problem of two two-level atoms coupled to the vacuum radiation field
is studied within the framework of a one-dimensional (1D) model in the resonance dipole
approximation. In the model, atoms interact only with photons propagating along the
interatomic axis £-axis), while interactions with all the other field harmonics are ignored.
For instance, the model can be applied to atoms in a cylindrical cavity (waveguide) of a
small radius, where due to the small radius, the characteristic frequencies of all transverse
modes lie far from the frequency of the atomic transition under consideration.

The method developed here is based on an exact diagonalization of the model
Hamiltonian, which allows us to study the temporal evolution of an arbitrary one-particle
initial state of the atoms plus quantized field system. In particular, we derive explicit
expressions for the temporal behaviour of the initial state of the system in which one of
the atoms is excited, while the other and the field are in their ground states. This problem
has been called the Fermi problem, because Fermi was first to examine a transfer of an
excitation from one initially excited atom to the othé&j.[ The problem was the subject of
many earlier investigations [2—9] and remains of interest at the present time [10-15]. In
particular, the 1D model has been discussed previously by Arecci and CouPleasd
Milonni and Knight [?]. In the next section of this article we discuss the details of our
initial unnormalized model and its approximations.

In section 3, we generalize the standard Wigner—Weisskopf renormalization procedure
to the case of two atoms, detail the necessary steps and obtain the model Hamiltonian that
we shall treat. Then in section 4 we obtain the one-particle eigenstates.

One of the most fundamental questions related to this two-atom problem is the question
of causality in the atom—atom interaction. In section 5, we show that within the framework
of our model, we can give a rigorous proof that causality is not only preserved, but also

1 On leave from Landau Institute for Theoretical Physics, Kosygina Street 2, 117334 Moscow, and the Institute
of Spectroscopy, Russian Academy of Sciences, 142092 Troitsk, Moscow Region, Russia.
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that there exists no atom—atom correlation fot [, wherel is the interatomic separation.
In section 6, we determine the spectral density of emitted photons.

We also apply our approach in section 7 to a many-atom 1D model and obtain the
one-particle eigenstates of the model, which can be used in further studies of the dynamics
of a one-particle excitation in a chain of atoms with arbitrary positions.

2. 1D two-atom unnormalized model

In order to keep the analysis simple, first we shall confine ourselves to the case of identical
atoms, but the approach developed here can easily be applied to the more general case of
two different atoms.

An interaction of two-level atoms with a 1D quantized electromagnetic field is described
by the Hamiltonian

H=Hy+V (2.1)

*d
Ho = 012(0% + ) + 012005 + 1) + f o ol @ er(@) +c @e@)] 2.2)
0

o g . . . .
V= /0 2*:\/ Y (@)[(cr(@)€ + cL(0)€”)o]" + (ck ()€ + ¢ (w)e Vo,

+(cR(W)E + e (w)€ Yoy + (e ()€ + ¢ ()€ o5 ] (2.3)

wherey (w) = 2rwd?/Sy and Sp is the cross section of the waveguide. Here the two-level
atoms with the transition frequenay; 2, and the dipole moment of the transitiaf,located

at the points{x; = —a, x» = a} are described by the spin operaters = (¢*, 0", %),
o* = o* +io¥ with the commutator
[0}, gbj] = i8apeFok i,j,k=x,y,z2 a,b=1,2 (2.4)

where ¢/% is the unit antisymmetric tensor. The electric field is expanded in terms of
transverse plane wave propagating alargxis to positive (R) and negative (L) directions:

EXx) = e/ dﬂ / 2jw)[cR(a))ei“”C + cL(a))efi“’x] (2.5)
0 27 S()

where e is the polarization vector. The operators(w), « = R,L obey the Bose
commutation relations
[co (a))c;,r ()] = 278458 (0 — ). (2.6)
An atom-field interaction is described in the dipole approximation by the operator
V = —[d1E(—a) + dyE(a)] 2.7)
where the operator of the dipole moment of the resonance transition is given by
d=d +0)). (2.8)

In equation (2.3) we used the resonance (rotating-wave) approximation and omitted terms
crot (cpo,) which describe a simultaneous creation (annihilation) of both a photon and
an atomic excitation. Then, the operator

N=>Y @+D+ Y. /O dgwc;r(w)ca(w) (2.9)

a=1,2 a=R,L

commutes with the Hamiltonian and should be treated as the excitation number operator of
the atoms plus field system.



1D model of resonance energy transfer 2151
3. Renormalization procedure

Since the ‘particle’ number operatdy commutes with the Hamiltonian, all the model
eigenstates can be classified with respect to the number of particles, or eigenvalues of the
operatorN.
The vacuum state of the atoms plus field syst¢dy, contains no particleN|0) =
H|0) =0, and is defined by
co(w)|0) =0,710) = 0. (3.1)

Let us look for one-particle eigenstatég|¥;) = 1-|W¥,), as a linear superposition of
all the degrees of the freedom of the model,

*d
V) = [élaf + 6205 +/0 %(fR(w)CEeL(w) + fL(w)Cf(w))]lo% (3.2)

Then, the Sclirdinger equatiofH — 1)|¥ >= 0 takes the form

wfr(®, 1) + /7 (@) (ELR)E + E2(0)E7) = Afr(w, 1) (3.3)
wfi (@, 1) +\/y(w (ELET 4 5(M)EY) = Afi(w, 1) (3.4)

w1251(2) +/ 2y @) (fr@. e + fL(@, )E™) = hE1(L)  (3.5)

w1252(2) +/ \/V(w (fr(@, VE™ + filw, ™) =2E0).  (3.6)

The solutions of these equations are twice degenerate, i.e. there are two solutions (the
symmetric solutiorg; = & = & and the antisymmetric ong = —&, = £)) that correspond
to the same eigenenergy, To see that one must renormalize these eigenstates, let us
consider, for instance, only the symmetric solution. We then have

of (@, 1) + \/y(a) (€ + e e = Af (w, A) (3.7)
w12 + / S @) 4 €) fw,3) = 1EG) (3.8)

where fr = fi = f. Substitution
fl, ) = (€7 + Y (o, 1)

yields
0¥ (@, 1) + V7 (@) ) = . (3.9)
(h — w12E0) = / & @2 + e+ 9y (0, 1) (3.10)

wherel = 2a is the interatomic separation.
The general solution of equation (3.9) is obviously given by

V(.3 = 2180 — 0)p () + YD _gi) (3.11)
A—w+10
where¢ (1) is an arbitrary function. Substituting this expression into equation (3.10) we
find
(= 01)ER) =y W2+ e + o)

+$( )/ da) )/((1)) ( +e—|wl+éw1) (312)
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Since the functiory (w) o w, the integral diverges and must be renormalized. Within
the framework of the resonance (rotating-wave) approximation, which we have already
introduced in the previous section, one neglectsuttoependence of (w) and first replaces
y(w) — y(w12) = constant. Using the transform

=11

it is convenient now to rewrite the integral part of the right-hand side of equation (3.12) as
follows:

I=5L—1 (3.13)
0 da) 1 < -
L =y&E( —[2+e' 3.14
i) [ G e e (3.14)
L =yEQ )/ —7[2 + el g (3.15)
The first integral /3, is completely defined and yields
L =—iye) A+ €M) (3.16)

while the second ondp, diverges and has to be renormalized. It should be emphasized that
this integral is purely real and contains only corrections to the transition frequengyjue

to the atom—field coupling, which affects the time evolution of the system. However, these
corrections will be unimportant for the causal behaviour of the system. Moreover, since the
model under consideration is nonrelativistic and does not include the relativistic behaviour
of atomic electrons, we will neglect the part independent of the interatomic sepatation,
(Lamb shift) and simply take the transition frequency of a single atofy, is taken to be

the experimental value. Then, we have

I(reno,) 2 é(k)/ da) cos(a)l) 2t )/ dw cos(wl) (3.17)
27 w + w12
where, in the last step, we have replaced )thdaependence of the integral with— wqo.
Thus, finally we find forg (1) in the symmetric eigenstate

24+e ™ et
O = A 3.18
(L) ﬁ)\ (132)+|y(1+ékl)¢( ) (3.18)

where
© * dw cos(wl)
Wy = W12 =Y 2wt 012

and the integral functions are defined as usual [16]:
Si(x) = / a3 G = / ar &

The second term in (3.19) describes a correction to the transition frequency due to
an effective interatomic interaction created by an atom—field coupling. This term lifts the
degeneracy of two independent atoms and is a function of the interatomic separation. For
large interatomic separations;> wl‘zl, its contribution falls away due to ligx“si(x)) =
lim (x%ci(x)) =0, asx — oo for a < 1, and can be omitted. On the other hand, for small
separations, since @) ~ In (x), this correction then becomes comparable to the transition
frequency and, hence, the resonance approximation fails only at exponentially small, non-
physical interatomic separations,~ wl‘zl exp(—wiz/y). Thus, within the framework of

= w12+ ]/[Sin (w12D)Si(w12l) + COS(a)lzl)Ci(a)lzl)] (319)
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the 1D model, the resonance approximation remains adequate for any physical interatomic
distances.

Let us now turn to the antisymmetric eigenstaie £ —&,). Here, instead of (3.19),
one obtains

(3.20)

wg) =wip+vy /OO di) cos(el) .
0 27T w+ w12

To keep the notation simple, for the moment we shall confine ourselves only to the case
of long interatomic separations;,/ > 1, where the corrections to the transition frequency
given by (3.19) and (3.20) can be neglected. These corrections will be restored into the
model eigenstates at the end of the next section.

After all the above is done, one can easily see that the renormalization procedure used
here is equivalent to simply first introducing an effective model Hamiltonian and starting
from there. Namely, to renormalized our starting model, one replages— y = constant
in (2.2) and (2.3), and extends the lower limit of integration over the frequency down to
—o0. Then, in terms of operators

* d . * d :
er(x) = /;Oo chR(w)e'wx e (x) = /_OO %q_(a))e*"‘”‘ (3.22)
the effective Hamiltonian takes the form
Y 0 0
Hy = wi2(0f + 05 +1) —i / dx (e;r(x)axeR(x) — ef(x)MeL(x)> (3.23)
V=Y. ) f dx 8(x — x) (g (X)a," + € (x)a,) (3.24)

a=1,2a=R,L
while the one-particle eigenstates should be rewritten as follows:

V) = [510f+€202++/ dX(fR(X)ef{(X)+fL(X)€L+(X))}|0)- (3.25)

One should note that the renormalization procedure used here is simply a generalization
of the standard Wigner—Weisskopf approximation [17] for the case of two atoms. Lastly,
we again note that in the case of short interatomic separatiop$, < 1, the atomic
transition frequency will be given by the expressions (3.19) and (3.20) for symmetric and
antisymmetric eigenstates, respectively.

4. One-particle eigenstates

In terms of the effective Hamiltonian (3.22)—(3.24) the Sclinger equation(H — )| V) =
0, takes the following form:

. d
S RO VY D 8B G — ) = AfR(X0) (4.1)
a=1,2
.d
I L0+ V7 D &b —xa) = Afi(0) 4.2)
a=12
szt + 7 [ deS—x) () + f0) = 4.3)

Substituting
fr(x) = €4 pr(x) fi(x) = e ™ (x)
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yields
.d . _
'ad’R(x) = Y616 M8 (x — x1) + E267M28 (x — x2)] (4.4)
d . .
—lad)L(x) = /7 [61€8(x — x1) + 26775 (x — x2)] (4.5)
(h — w12, = 7 f de8(x — x)[GrE™ +p E].  (4.6)
The general solution of the equations (4.4) and (4.5) is
Pr(x) = Cr — iy/y[E16770(x — x1) + £267720(x — x7)] (4.7)
PL(x) = CL — i /Y[E1€"0(x1 — x) + £26"20 (x2 — x)] (4.8)

whereCg L are arbitrary constant<’r represents the amplitude of the right-going photons
asx — —oo while C_ represents the amplitude of the left-going photonstas- +oc.
Thus these two quantities give the initial input fluxes of photons from both directions.

Substituting (4.7) and (4.8) into (4.6), we obtain the following set of the algebraic
equations fok; :

(A — w12+ iy)EL +iygés = /¥ (CrEM + CLe™™™) (4.9)

iygéL + (A — w1p +iy)E2 = /7 (CrEM2 + CLe™™?) (4.10)
where the integral dx §(x)6(x) has been taken to be/2, and

g = exp(ir|x1 — x2|). (4.11)

In solving (4.9) and (4.10), it becomes convenient to use eigenstates of the parity
operator. To find these states, we start by defiring= & + &. Then (4.9) and (4.10)
become

[ — w12+ iy L+ @)l5+ = V7ICRE™ + €72) + CLE™ + &™) (4.12)
[ — w12 +iy (1= 9)l5- = JY[CrE™ — &) 4 CLE™ — &), (4.13)
For the symmetric solutior§_ must vanish and (4.13) then gives

R =e i pethn P = 4 gt (4.14)

which leads to the solution

2 re
f1=6= f(s)()t) = ﬁm (4-15)
where
QY = wip+yg” re=y1+¢g) (4.16)

and g/, g’ are the real and imaginary parts of the functighg = ¢’ + ig”. Substituting
(4.14) and (4.15) into (4.7) and (4.8) yields for the photon wavefunctions in the symmetric
eigenstates

L—=QO — ir(s)sgr(x —X1) eix(x7x1)

© _
R (x,4) = A — QO +ir®
3= QO —ITOSGNx —x2) jy(, ) (4.17)
r— QO £ir® |
9 g 2 P RO ITOSO =)
Jo A— QO +ir®
_ ol _ir® —
A — Q¥ —iI'¥sgnix; — x) g iAx—x2) (4.18)

% — QO 4 irG
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where
1 x>0
sgnx) = 0 x=0
-1 x < 0.

Correspondingly, for the antisymmetric solutign, must vanish, giving
CI(?a) — e—iAxl _ e—ikxz CEa) — ékxl _ eisz (419)

which leads to the antisymmetric solution

@ 2 re
f1=—-6&E=690) = JV A —Q@ 4ir@ o
and
@ (= T RO ITOSY — 1) Gy
R (x,2) = A —Q@ 1ir@
A= Q@ —ir@sgnx — X2) Jix—x) (4.21)
A—Q@4ir@ |
£ py = 2RO TS =) ey
L (,A) = A—Q@ ir@
_)\' — Q@ _ iF(a)Sgr(XZ —X) —iX(x—x2) (4 22)
A— Q@ +ir®@ |
where
2 — oy — 5" r@—ya1d-g). (4.23)

Thus, we have two independent eigenstates of our model with eigeneneldey are

h,s) = [s<s) (M) (og" + o) + / dr (£ (x, Meg () + £ (x, x)ef(x))} |0) (4.24)

A, a) = [s@m(of — o)+ / de (£ (x, Veg (1) + £ (x, x>ei<x>>]|0> (4.25)

which form the orthogonal basigy, s|A, a) = 0, in the two-dimensional space of the model
eigenstates:

8 8
(sl s) = —TOSG.— ) (w,alr,a) = —T@ —p).  (4.26)
14 14

These results can easily be extended to the case of short interatomic separations,
w12l < 1. To do it one simply needs to redefine the quantifé¥® as follows:

Q¥ =0 +yg" Q¥ =0 —ys (4.27)

wherea)f’za) are given by (3.19) and (3.20), respectively. Then, all the above expressions
for the one-particle eigenstates become valid for arbitrary interatomic separations.
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5. Fermi problem

Now we shall address the question of whether or not an excited atom can transmit a photon
to a second atom, in the ground state, faster than the speed of light. We shall show that
within the framework of the effective Hamiltonian and the generalized Wigner—Weisskopf
renormalization procedure, causality is preserved.

At some initial moment of time = 0, let one of the atoms, say atom number 1, be
excited, while the second one and the field are in their ground states, i.e.

lIn) = o;10). (5.1)

This state is a one-particle stadin) = 1. |In), and, hence, can be represented as a
linear superposition of the one-particle eigenstates of the model,

© da

In) = — A )| 5.2

lIn) G;af_wh M)x, o) (5.2)
where the coefficients are found from (5.1) and (4.26). They are

@y - VY 1

APC) = (5.3)
The dynamics of the initial state is determined by the Hamiltonian

< da -

D (1)) = exp(—iHt)|In) = A e™MA, o). 5.4

B (1)) = exp(—iHD)In) ;/_wh e 1, o) (5.4)
Let ®,(¢) be the probability amplitude for theth atom to be excited. Then
®1(1) = (Olog |@(1) = / %e"“ (A9MEVR) + AP MED D)) (5.5)
2(1) = (Oloy | @ (1)) = [ %e*‘“ (APMEP ) — AP WEP (L)) (5.6)

which describe the temporal behaviour of each atom’s excitation. Using the explicit
expressions (4.15), (4.20), and (5.3), one obtains

e 1 1\ .,
P =- /_oo 4xi (u(x) - rm) © (.7)

o [®dadx (1 1 e [ da @rin
®2(1) == f_oo 4xi (m(k) - r_m) €=y /_oo 2t Oyr_ oy Y

re() =2 — o) +iyd+é) re(W) =r—of +iyd-é¥) (5.9)

where

and!/ = |x; — x2|)0 is the interatomic separation.

Now, if one simply considers the imaginary part of (5.9), it is very easy to show that
zeros ofry (1) never occur in the upper half-plane. This fact leads immediately to the
vanishing of the wavefunction of the initially unexcited atom fok I, ®,(t < /) = 0.

Thus causality is preserved. It is easily to see also that the frequency splitting between
the symmetric and antisymmetric eigenstatas)) = »{3(l) — »$3(0), plays no role in

causal behaviour of the system. Therefore, to avoid more complicated expressions, in the
following calculations we confine ourselves to the case of long interatomic separations when

the frequency splitting can be neglected.
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Furthermore, it is rather simple to continue and evaluate in an explicit form (5.7) and
(5.8), which we shall need in the next section. In the dimensionless variables

A =IA y' =ly t = i (5.10)
the integrals from (5.7) and (5.8) take the form
[ee] d)\‘ e—i)xt
Li=—] ™ 5.11
+() /,oo 4ri e (0) ®.11)
re(\) = A +iy 1+ P (5.12)

wherego = w1l and all primes and the trivial factor expiwiot) in front of integral have
been omitted.

The poles of (5.11) are transcendental, but we may still evaluate (5.11) by using the
following trick. Introducing the new variable

A=2nn+u
whereu € (0,27), n = 0,+£1, ..., one can represent (5.11) as follows:

() = — /0 - %‘T‘ie—i“’ ”;OO er:f:(u) (5.13)
The sum

0 —i2mnt

Ya(t) = n;oo G ——en (5.14)
can be treated as the Fourier series of the periodic funetion + 7) = ¥.(¢):

Y (1) = i Y ()€ (5.15)

n=1oo .
Vi(w,) = ?/O dr €' (1) (5.16)

wherew, = 2rn/T. In our case the period i§ = 1 (or T = [~! in dimension variables),
and we easily find:

Yi(u,r) = —m exp [ir+(w)t] te (0,1 (5.17)
Va(u,t+n)=ys(u, 1) (5.18)
and
2
d .
Ie(r) = —/ Tﬂ-e_lwl/f:t(ﬁhf)- (5.19)
0 Tl

Due to the periodicity of the functiony.(u, ), the temporal axis 0< ¢ < o©
conveniently divides into an infinite set of temporal zones. Now we can represent the
temporal variable as

t=1+n (5.20)

wheret € (0,1 andn = 0,1,.... Then, for thenth temporal zone the function
1" (1) = I.(t +n) is given by

27 d,l,L e—iu,n ]
)y _ _
@ = [ i Pl — ] (5.21)
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or, in terms of the variable = d®+m),
- dz 1
I (1) = drtogrt jﬁ—_—F 5.22
+ (D) Al ol +(2) (5.22)
where
ez ertz
1 — zerzg—(dot+y) F(z)=

Fi(z) = (5.23)

and the integral is taken in the positive direction along the circle of unit radius with the
centre at the point = 0.

It is easy to show the functiong.(z) have no pole inside the integration contour. Thus
one obtains

S 11
Ii")(r) — g lowrdnbog—yt =~ F.(2) (5.24)
2n! [ dz" :=0
ISAL: erez
Frl@) = 1 — zevizg(igotyD F-@) = 1 — zerize=(do+yD) (5.25)
upon restoring the parameterNow t € (0, ).
Thus, we finally find for the atomic wavefunctions:
S 11 /d
®)(r) = e e IFL@) + Fo ()]
2n! \ dz" =0
o 1SS (n—m)! -
_ i(w12—iy)t — m _a\m _ m (y 1+igo)
= 12 2;)7”! y" [(ml — )" + (t — ml)™] €" 0 (5.26)
S 11 /d
q>(n) — e—lwlgtelmpoe—yrii —[F Y — F_(z
2 (T) o dz”[ +(2) (2)] o
i LSS (n—m)! -
_ (o )1t m _oa\m o _ m (yl+igo)
= g (@-ly QZTV [(ml — )™ — (t — ml)™] "I +id0 (5.27)

m=0

where in the second equalities= 7 +nl. It is easy to see that the functiods” and 3"
contain only evensg = 2k) or odd (n = 2k + 1) terms of the sum, respectively. Therefore,
the functional form of®{" does not change at the odd valuesiof 2k + 1. The same is
true for the functiondy” except at the even values of= 2k.

In the limiting case of very large interatomic distandes> y %, one needs to only
consider the first few temporal zones. Then, we have:

. 1 0<tr<2
Oq(t) = e gt { L 12— 2y Dt (5.28)
D, (1) = e 1! { 0 , Ost<I (5.29)
—%)/(t _ l)e(lwlzlJer) 1<t <3

and so on. The ‘retardation’ effect is obviously taking place at 2/ and repeats with a
period of T = 2. This is the minimum time it takes for the first atom to transmit a photon
to the second atom and then for the second atom to return the photon to the first atom.

6. Spectral density of radiation

Let us now take our solution (5.4) and determine the spectral density of the emitted photons.
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In the limit ¥ — oo, the contribution of the atomic variables to the stabdr)) (4.4)
vanishes, (because eventually it decays), and we find for the asymptotic state

|®(r — 00)) = exp(—iHgt)|Out) (6.1)
where Hr is the Hamiltonian of the free field,
e 0 d
Hp = —i /;oc dx (e,‘{(x)axeR(x) - ef(x)axa_(x)> (6.2)
and the out-state containing the radiated field is given by
|Out =/ de[yr(x)eq () + YL (x)e (x)]]0) (6.3)
where the photon wavefunctions are
YR(x) = ‘/77 / %{&(A)e"“x’“) + R_(h)e M) (6.4)
=Y f %{Rﬁk)é““” + R_(MeH ) (6.5)
2 J_ 21
and
1 1
Ri(A) = + . .
W= T w (©6)

The spectral density of radiation propagating in the positive and negative directions of
the x-axis is determined by the obvious expressions

Gr(w) = Yr(@)Yr(w) GL(w) = Y (@)Y (w) (6.7)

whereyr  (w) are the Fourier transform of the asymptotic wavefunction,

Yr(w) = / dx Yr(x)e = %(m(w)e—‘m +R_(w)e™?)  (6.8)

VY

YL () = / dx Y (x)€" = 7(&(w)é‘”"l + R_(w)€®"2). (6.9)

Then, we find

r® r®
(- Q02+ (02 " (- Q@2+ (F<a>>2>
F(S)(w _ F(a)) _ F(a)(a) _ F(S))
[(@ — Q02+ TO)[(@ — 2@)2 + (T@)7]
where the positive sign in front of the third term correspond& ¢ and the negative sign
to G_. If two detectors collect the radiation emitted in both directions of skexis, the
measured spectral density will be given by
r® re

(0 — Q)24+ (I'9)? + (w0 — Q@)2 4 (r@)2°

The expression (6.10) is a periodic function of the interatomic separatiofx; — xz|,
and, hence, the contribution of atom—atom correlations to the spectral density of radiation

does not vanish at any Then, the spectral density of radiation consists of two Lorentz
lines of width

9 =yd+cosprti—x))  I'®=yd-cospix —x)])

1
GrL(w) = > (

+y sinfw(x; — x2)] (6.10)

G(w)=Gr+GL =

(6.11)
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located at the frequencies
QO = w12+ Yy Sin(w12|x1 — Xx2|) Q@ = w12 — Y Sin(a)12|x1 — x2])

respectively, and the dynamics of our initial problem can be treated as an independent
exponential spontaneous decay of symmetric and antisymmetric states of the two-atom
system, in which the interatomic correlations are generated by virtual photon exchanges
during a time shorter than the spontaneous relaxation #ime[6, 8].

7. Many-atom model
In this section of the article we derive the equations describing the dynamics of a one-particle

excitation in a system oM identical atoms located at the points,,a =1, ..., M}. The
Hamiltonian of the model is obviously to be

M
H=0p) 0 +1) +/
a=1 -

M
+Y Z 8(x = xa)[(r(x) + €L(x))a,” + (g (x) + €L(x))o, ] } (7.1)
a=1

o . d . 0
dx{ — Ieg(x)aeR(x) + Ief(x)aq(x)

o0

where we also confine ourselves to the case of long interatomic separations.
The one-particle eigenstates are given by

M 00
A = [Zsao; + / de (fr(x)ed (x) + ﬂ(x)ef(x))] 10) (7.2)
a=1 -

where the wavefunctions are determined from the &tinger equation which in our case
takes the following form:

d U
(Idx + )») fr(x, 1) = ﬁ;éa()»)S(x — Xa) (7.3)
d M
<_idx + k) Silx,2) = W;Sa(k)S(x — Xa) (7.4)
(A — w12)€, (1) = ﬁ/ dx 8(x — xa) (fR(x, 1) + filx, ). (7.5)
The general solution of (7.3) and (7.4) is
M
fr(x, 1) = CROEM =iy Y &) 0 (x — x,) (7.6)
a=1
A2 =CLoe™ —iyy Y Ee 0 (x, — x) 7.7)
a=1

(whereCr are arbitrary constants) which when substituted into (7.5) yields the following
set of linear algebraic equations for the atomic wavefunctions:

M
(A — w128, +iy Y & lg, = Cre™ + CLem, (7.8)
b=1
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We will now generalize the preceding to the case of a continuous resonance medium.
Then equation (7.8) takes the form:

L
O — 012)E(x, A) +iy / dy p(n)€* g (y, 1) = Cré*™ 4+ CLe™™  (7.9)
0

wherep(x) is the linear number density of the atoms,

L
/ dxp(x) =M
0

andL is the medium’s length. The expressions (7.6) and (7.7) for the photon wavefunctions
become respectively

fR(x, &) = CREM —i/y /0 dy p(VE(y, 1) (7.10)

file,2) = CLne™ —iyy f dy p(»)E(y, A)e M), (7.11)

Now consider what happens to the reflection and transmission of an incident light from
a resonance medium with the density of the number of atoms, such as

M
p(x) = T + 8p(x) (7.12)
wheredp(x) is a random function and represents fluctuations. It satisfies

(p(x)) =0 (8o (x)8p(y)) = BS(x — y). (7.13)

Here the symbol...) stands for averaging over disorder. Applying the operedérdx? +
1?) to both sides of (6.9), one can rewrite this integral equation in the form of thé&ialyer
equation with a partially random potential,

( d? 20y

—gzt wp(x)) E(x, ) = A% (x, A). (7.14)

It is well known that all the states of this equation are localizgd(fr quasi-localized for
a finite size medium) for any arbitrarily small paramegercharacterizing the strength of
the disorder. This leads to a non-trivial evolution of the reflected light [19, 20].

In other words, there will be a ‘light localization’ wherein any photon will bounce back
and forth, on average, leading it to be more likely found inside some localized region.
Now, as one can see from (7.14), there is a resonant denominator. Thus, if there are
fluctuations indp (x), with wavelengths matching the wavelengths of the localized photons,
then a considerable enhancement of the localized photon density could be expected.
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