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Exactly solvable one-dimensional model of resonance
energy transfer
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Departments of Physics and Mathematics & Computer Science, Clarkson University, Potsdam,
New York 13699-5815, USA

Received 5 September 1995

Abstract. The dynamics of two atoms coupled to the vacuum radiation field is investigated
within the framework of a one-dimensional model in the resonance dipole approximation. The
exact solution of the resonance energy transfer problem is obtained. A many-atom generalization
of the model is also discussed.

1. Introduction

In this article the problem of two two-level atoms coupled to the vacuum radiation field
is studied within the framework of a one-dimensional (1D) model in the resonance dipole
approximation. In the model, atoms interact only with photons propagating along the
interatomic axis (x-axis), while interactions with all the other field harmonics are ignored.
For instance, the model can be applied to atoms in a cylindrical cavity (waveguide) of a
small radius, where due to the small radius, the characteristic frequencies of all transverse
modes lie far from the frequency of the atomic transition under consideration.

The method developed here is based on an exact diagonalization of the model
Hamiltonian, which allows us to study the temporal evolution of an arbitrary one-particle
initial state of the atoms plus quantized field system. In particular, we derive explicit
expressions for the temporal behaviour of the initial state of the system in which one of
the atoms is excited, while the other and the field are in their ground states. This problem
has been called the Fermi problem, because Fermi was first to examine a transfer of an
excitation from one initially excited atom to the other [?]. The problem was the subject of
many earlier investigations [2–9] and remains of interest at the present time [10–15]. In
particular, the 1D model has been discussed previously by Arecci and Courtens [?] and
Milonni and Knight [?]. In the next section of this article we discuss the details of our
initial unnormalized model and its approximations.

In section 3, we generalize the standard Wigner–Weisskopf renormalization procedure
to the case of two atoms, detail the necessary steps and obtain the model Hamiltonian that
we shall treat. Then in section 4 we obtain the one-particle eigenstates.

One of the most fundamental questions related to this two-atom problem is the question
of causality in the atom–atom interaction. In section 5, we show that within the framework
of our model, we can give a rigorous proof that causality is not only preserved, but also
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that there exists no atom–atom correlation fort < l, wherel is the interatomic separation.
In section 6, we determine the spectral density of emitted photons.

We also apply our approach in section 7 to a many-atom 1D model and obtain the
one-particle eigenstates of the model, which can be used in further studies of the dynamics
of a one-particle excitation in a chain of atoms with arbitrary positions.

2. 1D two-atom unnormalized model

In order to keep the analysis simple, first we shall confine ourselves to the case of identical
atoms, but the approach developed here can easily be applied to the more general case of
two different atoms.

An interaction of two-level atoms with a 1D quantized electromagnetic field is described
by the Hamiltonian

H = H0 + V (2.1)

H0 = ω12(σ
z
1 + 1

2)+ ω12(σ
z
2 + 1

2)+
∫ ∞

0

dω

2π
ω[c+R(ω)cR(ω)+ c+L (ω)cL(ω)] (2.2)

V =
∫ ∞

0

dω

2π

√
γ (ω)[(cR(ω)e

−iωa + cL(ω)e
iωa)σ+

1 + (c+R(ω)e
iωa + c+L (ω)e

−iωa)σ−
1

+(cR(ω)e
iωa + cL(ω)e

−iωa)σ+
2 + (c+R(ω)e

−iωa + c+L (ω)e
iωa)σ−

2 ] (2.3)

whereγ (ω) = 2πωd2/S0 andS0 is the cross section of the waveguide. Here the two-level
atoms with the transition frequency,ω12, and the dipole moment of the transition,d, located
at the points{x1 = −a, x2 = a} are described by the spin operatorsσ i = (σ x, σ y, σ z),
σ± = σx ± iσy with the commutator

[σ ia, σ
j

b ] = iδabe
ijkσ k i, j, k = x, y, z a, b = 1, 2 (2.4)

where eijk is the unit antisymmetric tensor. The electric field is expanded in terms of
transverse plane wave propagating alongx-axis to positive (R) and negative (L) directions:

E(x) = e

∫ ∞

0

dω

2π

√
2πω

S0
[cR(ω)e

iωx + cL(ω)e
−iωx ] (2.5)

where e is the polarization vector. The operatorscα(ω), α = R, L obey the Bose
commutation relations

[cα(ω)c
+
β (ω

′)] = 2πδαβδ(ω − ω′). (2.6)

An atom–field interaction is described in the dipole approximation by the operator

V = −[d̂1E(−a)+ d̂2E(a)] (2.7)

where the operator of the dipole moment of the resonance transition is given by

d̂ = d(σ+
a + σ−

a ). (2.8)

In equation (2.3) we used the resonance (rotating-wave) approximation and omitted terms
c+α σ

+
a (cασ−

a ) which describe a simultaneous creation (annihilation) of both a photon and
an atomic excitation. Then, the operator

N =
∑
a=1,2

(σ za + 1
2)+

∑
α=R,L

∫ ∞

0

dω

2π
c+α (ω)cα(ω) (2.9)

commutes with the Hamiltonian and should be treated as the excitation number operator of
the atoms plus field system.
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3. Renormalization procedure

Since the ‘particle’ number operatorN commutes with the Hamiltonian, all the model
eigenstates can be classified with respect to the number of particles, or eigenvalues of the
operatorN .

The vacuum state of the atoms plus field system,|0〉, contains no particle,N |0〉 =
H |0〉 = 0, and is defined by

cα(ω)|0〉 = σ−
a |0〉 = 0. (3.1)

Let us look for one-particle eigenstates,N |91〉 = 1 · |91〉, as a linear superposition of
all the degrees of the freedom of the model,

|9〉 =
[
ξ1σ

+
1 + ξ2σ

+
2 +

∫ ∞

0

dω

2π
(fR(ω)c

+
R(ω)+ fL(ω)c

+
L (ω))

]
|0〉. (3.2)

Then, the Schr̈odinger equation(H − λ)|9 >= 0 takes the form

ωfR(ω, λ)+
√
γ (ω)(ξ1(λ)e

iωa + ξ2(λ)e
−iωa) = λfR(ω, λ) (3.3)

ωfL(ω, λ)+
√
γ (ω)(ξ1(λ)e

−iωa + ξ2(λ)e
iωa) = λfL(ω, λ) (3.4)

ω12ξ1(λ)+
∫ ∞

0

dω

2π

√
γ (ω)(fR(ω, λ)e

−iωa + fL(ω, λ)e
iωa) = λξ1(λ) (3.5)

ω12ξ2(λ)+
∫ ∞

0

dω

2π

√
γ (ω)(fR(ω, λ)e

iωa + fL(ω, λ)e
−iωa) = λξ2(λ). (3.6)

The solutions of these equations are twice degenerate, i.e. there are two solutions (the
symmetric solutionξ1 = ξ2 = ξ and the antisymmetric oneξ1 = −ξ2 = ξ)) that correspond
to the same eigenenergy,λ. To see that one must renormalize these eigenstates, let us
consider, for instance, only the symmetric solution. We then have

ωf (ω, λ)+
√
γ (ω)(eiωa + e−iωa)ξ(λ) = λf (ω, λ) (3.7)

ω12ξ +
∫ ∞

0

dω

2π

√
γ (ω)(e−iωa + eiωa)f (ω, λ) = λξ(λ) (3.8)

wherefR = fL = f . Substitution

f (ω, λ) = (e−iωa + eiωa)ψ(ω, λ)

yields

ωψ(ω, λ)+
√
γ (ω)ξ(λ) = λψ(ω, λ) (3.9)

(λ− ω12)ξ(λ) =
∫ ∞

0

dω

2π

√
γ (ω)[2 + e−iωl + eiωl ]ψ(ω, λ) (3.10)

wherel = 2a is the interatomic separation.
The general solution of equation (3.9) is obviously given by

ψ(ω, λ) = 2πδ(λ− ω)φ(λ)+
√
γ (ω)

λ− ω + i0
ξ(λ) (3.11)

whereφ(λ) is an arbitrary function. Substituting this expression into equation (3.10) we
find

(λ− ω12)ξ(λ) =
√
γ (λ)[2 + e−iλl + eiλl ]φ(λ)

+ξ(λ)
∫ ∞

0

dω

2π

γ (ω)

λ− ω + i0
(2 + e−iωl + eiωl). (3.12)
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Since the functionγ (ω) ∝ ω, the integral diverges and must be renormalized. Within
the framework of the resonance (rotating-wave) approximation, which we have already
introduced in the previous section, one neglects theω-dependence ofγ (ω) and first replaces
γ (ω) → γ (ω12) = constant. Using the transform∫ ∞

0
=

∫ ∞

−∞
−

∫ 0

−∞
it is convenient now to rewrite the integral part of the right-hand side of equation (3.12) as
follows:

I = I1 − I2 (3.13)

I1 = γ ξ(λ)

∫ ∞

−∞

dω

2π

1

λ− ω + i0
[2 + e−iωl + eiωl ] (3.14)

I2 = γ ξ(λ)

∫ ∞

0

dω

2π

1

λ+ ω
[2 + e−iωl + eiωl ]. (3.15)

The first integral,I1, is completely defined and yields

I1 = −iγ ξ(λ)(1 + eiλl) (3.16)

while the second one,I2, diverges and has to be renormalized. It should be emphasized that
this integral is purely real and contains only corrections to the transition frequency,ω12, due
to the atom–field coupling, which affects the time evolution of the system. However, these
corrections will be unimportant for the causal behaviour of the system. Moreover, since the
model under consideration is nonrelativistic and does not include the relativistic behaviour
of atomic electrons, we will neglect the part independent of the interatomic separation,l,
(Lamb shift) and simply take the transition frequency of a single atom,ω12, is taken to be
the experimental value. Then, we have

I
(renor)
2 = 2γ ξ(λ)

∫ ∞

0

dω

2π

cos(ωl)

ω + λ
= 2γ ξ(λ)

∫ ∞

0

dω

2π

cos(ωl)

ω + ω12
(3.17)

where, in the last step, we have replaced theλ-dependence of the integral withλ → ω12.
Thus, finally we find forξ(λ) in the symmetric eigenstate

ξ (s)(λ) = √
γ

2 + e−iλl + eiλl

λ− ω
(s)
12 + iγ (1 + eiλl)

φ(λ) (3.18)

where

ω
(s)
12 = ω12 − γ

∫ ∞

0

dω

2π

cos(ωl)

ω + ω12
= ω12 + γ [sin(ω12l)si(ω12l)+ cos(ω12l)ci(ω12l)] (3.19)

and the integral functions are defined as usual [16]:

si(x) = −
∫ ∞

x

dt
sint

t
ci(x) = −

∫ ∞

x

dt
cost

t
.

The second term in (3.19) describes a correction to the transition frequency due to
an effective interatomic interaction created by an atom–field coupling. This term lifts the
degeneracy of two independent atoms and is a function of the interatomic separation. For
large interatomic separations,l � ω−1

12 , its contribution falls away due to lim(xasi(x)) =
lim (xaci(x)) = 0, asx → ∞ for a < 1, and can be omitted. On the other hand, for small
separations, since ci(x) ∼ ln (x), this correction then becomes comparable to the transition
frequency and, hence, the resonance approximation fails only at exponentially small, non-
physical interatomic separations,l ∼ ω−1

12 exp(−ω12/γ ). Thus, within the framework of
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the 1D model, the resonance approximation remains adequate for any physical interatomic
distances.

Let us now turn to the antisymmetric eigenstate (ξ1 = −ξ2). Here, instead of (3.19),
one obtains

ω
(a)
12 = ω12 + γ

∫ ∞

0

dω

2π

cos(ωl)

ω + ω12
. (3.20)

To keep the notation simple, for the moment we shall confine ourselves only to the case
of long interatomic separations,ω12l � 1, where the corrections to the transition frequency
given by (3.19) and (3.20) can be neglected. These corrections will be restored into the
model eigenstates at the end of the next section.

After all the above is done, one can easily see that the renormalization procedure used
here is equivalent to simply first introducing an effective model Hamiltonian and starting
from there. Namely, to renormalized our starting model, one replacesγ (ω) → γ = constant
in (2.2) and (2.3), and extends the lower limit of integration over the frequency down to
−∞. Then, in terms of operators

εR(x) =
∫ ∞

−∞

dω

2π
cR(ω)e

iωx εL(x) =
∫ ∞

−∞

dω

2π
cL(ω)e

−iωx (3.21)

the effective Hamiltonian takes the form

H = H0 + V (3.22)

H0 = ω12(σ
z
1 + σ z2 + 1)− i

∫ ∞

−∞
dx

(
ε+

R (x)
∂

∂x
εR(x)− ε+

L (x)
∂

∂x
εL(x)

)
(3.23)

V = √
γ

∑
a=1,2

∑
α=R,L

∫ ∞

−∞
dx δ(x − xa)(εα(x)σ

+
a + ε+

α (x)σ
−
a ) (3.24)

while the one-particle eigenstates should be rewritten as follows:

|9〉 =
[
ξ1σ

+
1 + ξ2σ

+
2 +

∫ ∞

−∞
dx(fR(x)ε

+
R (x)+ fL(x)ε

+
L (x))

]
|0〉. (3.25)

One should note that the renormalization procedure used here is simply a generalization
of the standard Wigner–Weisskopf approximation [17] for the case of two atoms. Lastly,
we again note that in the case of short interatomic separations,ω12l < 1, the atomic
transition frequency will be given by the expressions (3.19) and (3.20) for symmetric and
antisymmetric eigenstates, respectively.

4. One-particle eigenstates

In terms of the effective Hamiltonian (3.22)–(3.24) the Schrödinger equation,(H−λ)|91〉 =
0, takes the following form:

−i
d

dx
fR(x)+ √

γ
∑
a=1,2

ξaδ(x − xa) = λfR(x) (4.1)

i
d

dx
fL(x)+ √

γ
∑
a=1,2

ξaδ(x − xa) = λfL(x) (4.2)

ω12ξa + √
γ

∫ ∞

−∞
dx δ(x − xa)(fR(x)+ fL(x)) = λξa. (4.3)

Substituting

fR(x) = eiλxφR(x) fL(x) = e−iλxφL(x)
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yields

i
d

dx
φR(x) = √

γ [ξ1e−iλx1δ(x − x1)+ ξ2e−iλx2δ(x − x2)] (4.4)

−i
d

dx
φL(x) = √

γ
[
ξ1eiλx1δ(x − x1)+ ξ1eiλx2δ(x − x2)

]
(4.5)

(λ− ω12)ξa = √
γ

∫ ∞

−∞
dx δ(x − xa)[φR(x)e

iλxa + φL(x)e
−iλxa ]. (4.6)

The general solution of the equations (4.4) and (4.5) is

φR(x) = CR − i
√
γ [ξ1e−iλx1θ(x − x1)+ ξ2e−iλx2θ(x − x2)] (4.7)

φL(x) = CL − i
√
γ [ξ1eiλx1θ(x1 − x)+ ξ2eiλx2θ(x2 − x)] (4.8)

whereCR,L are arbitrary constants.CR represents the amplitude of the right-going photons
as x → −∞ while CL represents the amplitude of the left-going photons asx → +∞.
Thus these two quantities give the initial input fluxes of photons from both directions.

Substituting (4.7) and (4.8) into (4.6), we obtain the following set of the algebraic
equations forξ1,2:

(λ− ω12 + iγ )ξ1 + iγgξ2 = √
γ (CReiλx1 + CLe−iλx1) (4.9)

iγgξ1 + (λ− ω12 + iγ )ξ2 = √
γ (CReiλx2 + CLe−iλx2) (4.10)

where the integral
∫

dx δ(x)θ(x) has been taken to be 1/2, and

g = exp(iλ|x1 − x2|). (4.11)

In solving (4.9) and (4.10), it becomes convenient to use eigenstates of the parity
operator. To find these states, we start by definingξ± = ξ1 ± ξ2. Then (4.9) and (4.10)
become

[λ− ω12 + iγ (1 + g)]ξ+ = √
γ [CR(e

iλx1 + eiλx2)+ CL(e
−iλx1 + e−iλx2)] (4.12)

[λ− ω12 + iγ (1 − g)]ξ− = √
γ [CR(e

iλx1 − eiλx2)+ CL(e
−iλx1 − e−iλx2)]. (4.13)

For the symmetric solution,ξ− must vanish and (4.13) then gives

C
(s)
R = e−iλx1 + e−iλx2 C

(s)
L = eiλx1 + eiλx2 (4.14)

which leads to the solution

ξ1 = ξ2 = ξ (s)(λ) = 2√
γ

0(s)

λ−�(s) + i0(s)
(4.15)

where

�(s) = ω12 + γg′′ 0(s) = γ (1 + g′) (4.16)

and g′, g′′ are the real and imaginary parts of the functiong, g = g′ + ig′′. Substituting
(4.14) and (4.15) into (4.7) and (4.8) yields for the photon wavefunctions in the symmetric
eigenstates

f
(s)
R (x, λ) = λ−�(s) − i0(s)sgn(x − x1)

λ−�(s) + i0(s)
eiλ(x−x1)

+λ−�(s) − i0(s)sgn(x − x2)

λ−�(s) + i0(s)
eiλ(x−x2) (4.17)

f
(s)
L (x, λ) = λ−�(s) − i0(s)sgn(x1 − x)

λ−�(s) + i0(s)
e−iλ(x−x1)

+λ−�(s) − i0(s)sgn(x2 − x)

λ−�(s) + i0(s)
e−iλ(x−x2) (4.18)



1D model of resonance energy transfer 2155

where

sgn(x) =


1 x > 0

0 x = 0

−1 x < 0.

Correspondingly, for the antisymmetric solution,ξ+ must vanish, giving

C
(a)
R = e−iλx1 − e−iλx2 C

(a)
L = eiλx1 − eiλx2 (4.19)

which leads to the antisymmetric solution

ξ1 = −ξ2 = ξ (a)(λ) = 2√
γ

0(a)

λ−�(a) + i0(a)
(4.20)

and

f
(a)
R (x, λ) = λ−�(a) − i0(a)sgn(x − x1)

λ−�(a) + i0(a)
eiλ(x−x1)

−λ−�(a) − i0(a)sgn(x − x2)

λ−�(a) + i0(a)
eiλ(x−x2) (4.21)

f
(a)
L (x, λ) = λ−�(a) − i0(a)sgn(x1 − x)

λ−�(a) + i0(a)
e−iλ(x−x1)

−λ−�(a) − i0(a)sgn(x2 − x)

λ−�(a) + i0(a)
e−iλ(x−x2) (4.22)

where

�(a) = ω12 − γg′′ 0(a) = γ (1 − g′). (4.23)

Thus, we have two independent eigenstates of our model with eigenenergyλ. They are

|λ, s〉 =
[
ξ (s)(λ)(σ+

1 + σ+
2 )+

∫ ∞

−∞
dx(f (s)R (x, λ)ε+

R (x)+ f
(s)
L (x, λ)ε+

L (x))

]
|0〉 (4.24)

|λ, a〉 =
[
ξ (a)(λ)(σ+

1 − σ+
2 )+

∫ ∞

−∞
dx(f (a)R (x, λ)ε+

R (x)+ f
(a)
L (x, λ)ε+

L (x))

]
|0〉 (4.25)

which form the orthogonal basis,〈µ, s|λ, a〉 = 0, in the two-dimensional space of the model
eigenstates:

〈µ, s|λ, s〉 = 8π

γ
0(s)δ(λ− µ) 〈µ, a|λ, a〉 = 8π

γ
0(a)δ(λ− µ). (4.26)

These results can easily be extended to the case of short interatomic separations,
ω12l < 1. To do it one simply needs to redefine the quantities�(s,a) as follows:

�(s) = ω
(s)
12 + γg′′ �(a) = ω

(a)
12 − γg′′ (4.27)

whereω(s,a)12 are given by (3.19) and (3.20), respectively. Then, all the above expressions
for the one-particle eigenstates become valid for arbitrary interatomic separations.
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5. Fermi problem

Now we shall address the question of whether or not an excited atom can transmit a photon
to a second atom, in the ground state, faster than the speed of light. We shall show that
within the framework of the effective Hamiltonian and the generalized Wigner–Weisskopf
renormalization procedure, causality is preserved.

At some initial moment of timet = 0, let one of the atoms, say atom number 1, be
excited, while the second one and the field are in their ground states, i.e.

|In〉 = σ+
1 |0〉. (5.1)

This state is a one-particle stateN |In〉 = 1 · |In〉, and, hence, can be represented as a
linear superposition of the one-particle eigenstates of the model,

|In〉 =
∑
σ=s,a

∫ ∞

−∞

dλ

2π
A(σ)(λ)|λ, σ 〉 (5.2)

where the coefficients are found from (5.1) and (4.26). They are

A(σ)(λ) =
√
γ

2

1

λ−�(σ) − i0(σ)
. (5.3)

The dynamics of the initial state is determined by the Hamiltonian

|8(t)〉 = exp(−iHt)|In〉 =
∑
σ=s,a

∫ ∞

−∞

dλ

2π
A(σ)(λ)e−iλt |λ, σ 〉. (5.4)

Let 8a(t) be the probability amplitude for theath atom to be excited. Then

81(t) ≡ 〈0|σ−
1 |8(t)〉 =

∫ ∞

−∞

dλ

2π
e−iλt

(
A(s)(λ)ξ (s)(λ)+ A(a)(λ)ξ (a)(λ)

)
(5.5)

82(t) ≡ 〈0|σ−
2 |8(t)〉 =

∫ ∞

−∞

dλ

2π
e−iλt

(
A(s)(λ)ξ (s)(λ)− A(a)(λ)ξ (a)(λ)

)
(5.6)

which describe the temporal behaviour of each atom’s excitation. Using the explicit
expressions (4.15), (4.20), and (5.3), one obtains

81(t) = −
∫ ∞

−∞

dλ

4π i

(
1

r+(λ)
+ 1

r−(λ)

)
e−iλt (5.7)

82(t) = −
∫ ∞

−∞

dλ

4π i

(
1

r+(λ)
− 1

r−(λ)

)
e−iλt = γ

∫ ∞

−∞

dλ

2π

eiλ(l−t)

r+(λ)r−(λ)
(5.8)

where

r+(λ) = λ− ω
(s)
12 + iγ (1 + eiλl) r−(λ) = λ− ω

(a)
12 + iγ (1 − eiλl) (5.9)

and l = |x1 − x2|〉0 is the interatomic separation.
Now, if one simply considers the imaginary part of (5.9), it is very easy to show that

zeros ofr±(λ) never occur in the upper halfλ-plane. This fact leads immediately to the
vanishing of the wavefunction of the initially unexcited atom fort < l,82(t < l) = 0.
Thus causality is preserved. It is easily to see also that the frequency splitting between
the symmetric and antisymmetric eigenstates,1(l) = ω

(s)
12(l) − ω

(s)
12(l), plays no role in

causal behaviour of the system. Therefore, to avoid more complicated expressions, in the
following calculations we confine ourselves to the case of long interatomic separations when
the frequency splitting can be neglected.
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Furthermore, it is rather simple to continue and evaluate in an explicit form (5.7) and
(5.8), which we shall need in the next section. In the dimensionless variables

λ′ = lλ γ ′ = lγ t ′ = t

l
(5.10)

the integrals from (5.7) and (5.8) take the form

I±(t) = −
∫ ∞

−∞

dλ

4π i

e−iλt

r±(λ)
(5.11)

r±(λ) = λ+ iγ (1 ± ei(λ+φ0)) (5.12)

whereφ0 = ω12l and all primes and the trivial factor exp(−iω12t) in front of integral have
been omitted.

The poles of (5.11) are transcendental, but we may still evaluate (5.11) by using the
following trick. Introducing the new variable

λ = 2πn+ µ

whereµ ∈ (0, 2π), n = 0,±1, . . ., one can represent (5.11) as follows:

I±(t) = −
∫ 2π

0

dµ

4π i
e−iµt

∞∑
n=−∞

e−i2πnt

2πn+ r±(µ)
. (5.13)

The sum

ψ±(t) =
∞∑

n=−∞

e−i2πnt

2πn+ r±(µ)
(5.14)

can be treated as the Fourier series of the periodic functionψ±(t + T ) = ψ±(t):

ψ±(t) =
∞∑

n=−∞
ψ±(ωn)e−iωnt (5.15)

ψ±(ωn) = 1

T

∫ T

0
dt eiωntψ±(t) (5.16)

whereωn = 2πn/T . In our case the period isT = 1 (or T = l−1 in dimension variables),
and we easily find:

ψ±(µ, t) = − i

1 − exp [ir±(µ)]
exp [ir±(µ)t ] t ∈ (0, 1) (5.17)

ψ±(µ, t + n) = ψ±(µ, t) (5.18)

and

I±(t) = −
∫ 2π

0

dµ

4π i
e−iµtψ±(µ, t). (5.19)

Due to the periodicity of the functionψ±(µ, t), the temporal axis 06 t < ∞
conveniently divides into an infinite set of temporal zones. Now we can represent the
temporal variablet as

t = τ + n (5.20)

where τ ∈ (0, 1) and n = 0, 1, . . .. Then, for thenth temporal zone the function
I
(n)
± (τ ) ≡ I±(τ + n) is given by

I
(n)
± (τ ) =

∫ 2π

0

dµ

4π

e−iµn

1 − exp [ir±(µ)]
exp [i(r±(µ)− µ)τ ] (5.21)
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or, in terms of the variablez = ei(φ0+µ),

I
(n)
± (τ ) = einφ0e−γ τ

∮
dz

4π i

1

zn+1
F±(z) (5.22)

where

F+(z) = e−γ τz

1 − ze−γ ze−(iφ0+γ ) F−(z) = eγ τz

1 − zeγ ze−(iφ0+γ ) (5.23)

and the integral is taken in the positive direction along the circle of unit radius with the
centre at the pointz = 0.

It is easy to show the functionsF±(z) have no pole inside the integration contour. Thus
one obtains

I
(n)
± (τ ) = e−iω12teinφ0e−γ τ 1

2

1

n!

[
dn

dzn
F±(z)

]
|z=0

(5.24)

F+(z) = e−γ τz

1 − ze−γ lze−(iφ0+γ l) F−(z) = eγ τz

1 − zeγ lze−(iφ0+γ l) (5.25)

upon restoring the parameterl. Now τ ∈ (0, l).
Thus, we finally find for the atomic wavefunctions:

8
(n)

1 (τ ) = e−iω12teinφ0e−γ τ 1

2

1

n!

(
dn

dzn
[F+(z)+ F−(z)]

)
z=0

= e−i(ω12−iγ )t 1

2

n∑
m=0

(n−m)!

n!
γ m

[
(ml − t)m + (t −ml)m

]
em(γ1+iφ0) (5.26)

8
(n)

2 (τ ) = e−iω12teinφ0e−γ τ 1

2

1

n!

(
dn

dzn
[F+(z)− F−(z)]

)
z=0

= e−i(ω12−iγ )t 1

2

n∑
m=0

(n−m)!

n!
γ m

[
(ml − t)m − (t −ml)m

]
em(γ l+iφ0) (5.27)

where in the second equalities,t = τ +nl. It is easy to see that the functions8(n)

1 and8(n)

2
contain only even (m = 2k) or odd (m = 2k+1) terms of the sum, respectively. Therefore,
the functional form of8(n)

1 does not change at the odd values ofn = 2k + 1. The same is
true for the function8(n)

2 except at the even values ofn = 2k.
In the limiting case of very large interatomic distancesl � γ−1, one needs to only

consider the first few temporal zones. Then, we have:

81(t) = e−iω12te−γ t
{

1 0 6 t < 2l

1 − 1
2γ

2(t − 2l)2e2(iω12l+γ l) 2l 6 t < 4l
(5.28)

82(t) = e−iω12te−γ t
{

0 0 6 t < l

− 1
2γ (t − l)e(iω12l+γ l) l 6 t < 3l

(5.29)

and so on. The ‘retardation’ effect is obviously taking place att = 2l and repeats with a
period ofT = 2l. This is the minimum time it takes for the first atom to transmit a photon
to the second atom and then for the second atom to return the photon to the first atom.

6. Spectral density of radiation

Let us now take our solution (5.4) and determine the spectral density of the emitted photons.
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In the limit t → ∞, the contribution of the atomic variables to the state|8(t)〉 (4.4)
vanishes, (because eventually it decays), and we find for the asymptotic state

|8(t → ∞)〉 = exp(−iHFt)|Out〉 (6.1)

whereHF is the Hamiltonian of the free field,

HF = −i
∫ ∞

−∞
dx

(
ε+

R (x)
∂

∂x
εR(x)− ε+

L (x)
∂

∂x
εL(x)

)
(6.2)

and the out-state containing the radiated field is given by

|Out〉 =
∫ ∞

−∞
dx[ψR(x)ε

+
R (x)+ ψL(x)ε

+
L (x)]|0〉 (6.3)

where the photon wavefunctions are

ψR(x) =
√
γ

2

∫ ∞

−∞

dλ

2π
{R+(λ)e−iλ(x−x1) + R−(λ)e−iλ(x−x2)} (6.4)

ψL(x) =
√
γ

2

∫ ∞

−∞

dλ

2π
{R+(λ)eiλ(x−x1) + R−(λ)eiλ(x−x2)} (6.5)

and

R±(λ) = 1

r+(λ)
± 1

r−(λ)
. (6.6)

The spectral density of radiation propagating in the positive and negative directions of
the x-axis is determined by the obvious expressions

GR(ω) = ψ∗
R(ω)ψR(ω) GL(ω) = ψ∗

L (ω)ψL(ω) (6.7)

whereψR,L(ω) are the Fourier transform of the asymptotic wavefunction,

ψR(ω) =
∫ ∞

−∞
dx ψR(x)e

−iωx =
√
γ

2
(R+(ω)e−iωx1 + R−(ω)e−iωx2) (6.8)

ψL(ω) =
∫ ∞

−∞
dx ψL(x)e

iωx =
√
γ

2
(R+(ω)eiωx1 + R−(ω)eiωx2). (6.9)

Then, we find

GR,L(ω) = 1

2

(
0(s)

(ω −�(s))2 + (0(s))2
+ 0(a)

(ω −�(a))2 + (0(a))2

)
±γ sin [ω(x1 − x2)]

0(s)(ω − 0(a))− 0(a)(ω − 0(s))

[(ω −�(s))2 + (0(s))2][(ω −�(a))2 + (0(a))2]
(6.10)

where the positive sign in front of the third term corresponds toGR, and the negative sign
to GL. If two detectors collect the radiation emitted in both directions of thex-axis, the
measured spectral density will be given by

G(ω) = GR +GL = 0(s)

(ω −�(s))2 + (0(s))2
+ 0(a)

(ω −�(a))2 + (0(a))2
. (6.11)

The expression (6.10) is a periodic function of the interatomic separationl = |x1 − x2|,
and, hence, the contribution of atom–atom correlations to the spectral density of radiation
does not vanish at anyl. Then, the spectral density of radiation consists of two Lorentz
lines of width

0(s) = γ (1 + cos [ω12(x1 − x2)]) 0(a) = γ (1 − cos [ω12(x1 − x2)])
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located at the frequencies

�(s) = ω12 + γ sin(ω12|x1 − x2|) �(a) = ω12 − γ sin(ω12|x1 − x2|)
respectively, and the dynamics of our initial problem can be treated as an independent
exponential spontaneous decay of symmetric and antisymmetric states of the two-atom
system, in which the interatomic correlations are generated by virtual photon exchanges
during a time shorter than the spontaneous relaxation timeγ−1 [6, 8].

7. Many-atom model

In this section of the article we derive the equations describing the dynamics of a one-particle
excitation in a system ofM identical atoms located at the points{xa, a = 1, . . . ,M}. The
Hamiltonian of the model is obviously to be

H = ω12

M∑
a=1

(σ za + 1
2)+

∫ ∞

−∞
dx

{
− iε+

R (x)
∂

∂x
εR(x)+ iε+

L (x)
∂

∂x
εL(x)

+√
γ

M∑
a=1

δ(x − xa)[(εR(x)+ εL(x))σ
+
a + (ε+

R (x)+ εL(x))σ
−
a ]

}
(7.1)

where we also confine ourselves to the case of long interatomic separations.
The one-particle eigenstates are given by

|λ〉 =
[ M∑
a=1

ξaσ
+
a +

∫ ∞

−∞
dx(fR(x)ε

+
R (x)+ fL(x)ε

+
L (x))

]
|0〉 (7.2)

where the wavefunctions are determined from the Schrödinger equation which in our case
takes the following form:(

i
d

dx
+ λ

)
fR(x, λ) = √

γ

M∑
a=1

ξa(λ)δ(x − xa) (7.3)

(
−i

d

dx
+ λ

)
fL(x, λ) = √

γ

M∑
a=1

ξa(λ)δ(x − xa) (7.4)

(λ− ω12)ξa(λ) = √
γ

∫ ∞

−∞
dx δ(x − xa)(fR(x, λ)+ fL(x, λ)). (7.5)

The general solution of (7.3) and (7.4) is

fR(x, λ) = CR(λ)e
iλx − i

√
γ

M∑
a=1

ξa(λ)e
iλ(x−xa)θ(x − xa) (7.6)

fL(x, λ) = CL(λ)e
−iλx − i

√
γ

M∑
a=1

ξa(λ)e
−iλ(x−xa)θ(xa − x) (7.7)

(whereCR,L are arbitrary constants) which when substituted into (7.5) yields the following
set of linear algebraic equations for the atomic wavefunctions:

(λ− ω12)ξa + iγ
M∑
b=1

eiλ|xa−xb|ξb = CReiλxa + CLe−iλxa . (7.8)
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We will now generalize the preceding to the case of a continuous resonance medium.
Then equation (7.8) takes the form:

(λ− ω12)ξ(x, λ)+ iγ
∫ L

0
dy ρ(y)eiλ|x−y|ξ(y, λ) = CReiλx + CLe−iλx (7.9)

whereρ(x) is the linear number density of the atoms,∫ L

0
dx ρ(x) = M

andL is the medium’s length. The expressions (7.6) and (7.7) for the photon wavefunctions
become respectively

fR(x, λ) = CR(λ)e
iλx − i

√
γ

∫ x

0
dy ρ(y)ξ(y, λ)eiλ(x−y) (7.10)

fL(x, λ) = CL(λ)e
−iλx − i

√
γ

∫ L

x

dy ρ(y)ξ(y, λ)e−iλ(x−y). (7.11)

Now consider what happens to the reflection and transmission of an incident light from
a resonance medium with the density of the number of atoms, such as

ρ(x) = M

L
+ δρ(x) (7.12)

whereδρ(x) is a random function and represents fluctuations. It satisfies

〈δρ(x)〉 = 0 〈δρ(x)δρ(y)〉 = βδ(x − y). (7.13)

Here the symbol〈. . .〉 stands for averaging over disorder. Applying the operator(d2/dx2 +
λ2) to both sides of (6.9), one can rewrite this integral equation in the form of the Schrödinger
equation with a partially random potential,(

− d2

dx2
+ 2λγ

λ− ω12
ρ(x)

)
ξ(x, λ) = λ2ξ(x, λ). (7.14)

It is well known that all the states of this equation are localized [?] (or quasi-localized for
a finite size medium) for any arbitrarily small parameterβ, characterizing the strength of
the disorder. This leads to a non-trivial evolution of the reflected light [19, 20].

In other words, there will be a ‘light localization’ wherein any photon will bounce back
and forth, on average, leading it to be more likely found inside some localized region.
Now, as one can see from (7.14), there is a resonant denominator. Thus, if there are
fluctuations inδρ(x), with wavelengths matching the wavelengths of the localized photons,
then a considerable enhancement of the localized photon density could be expected.

Acknowledgments

One of the authors (VIR), wishes to thank the National Research Council for their partial
support of this research under the Cooperation in Applied Science and Technology program
(CAST). This research has also been supported in part by the Air Force Office of Scientific
Research (AFOSR) and the Office of Naval Research (ONR).



2162 D J Kaup and V I Rupasov

References

[1] Fermi E 1932Rev. Mod. Phys.4 87
[2] Heitler W and Ma S T 1949Proc. R. Irish Acad.52 109
[3] Hamilton J 1949Proc. R. Soc.A 62 12
[4] Louisell W H 1964 Radiation and Noise in Quantum Electronics(New York: McGraw-Hill)
[5] Shirokov M I 1967 Sov. J. Nucl. Phys.4 774; 1978Sov. Phys.–Usp.21 345
[6] Arecci F T and Courtens E 1970Phys. Rev.A 2 1730
[7] Philpot M R 1974J. Chem. Phys.62 1812
[8] Milonni P W and Knight P L 1974Phys. Rev.A 10 1096; 1976Phys. Lett.56A 275
[9] Rzazewski K and Zakowicz W 1976J. Phys. A: Math. Gen.9 1159

[10] Power E A and Thirunamachandran T 1983Phys. Rev.A 28 2649
[11] Rubin M H 1987Phys. Rev.D 35 3836
[12] Compagno G, Palma G M, Passante P and Persico F 1989Europhys. Lett.9 125
[13] Biswas A K, Compagno G, Palma G M, Passante P and Persico F 1990Phys. Rev.A 42 4291
[14] Valentini A 1991Phys. Lett.153A 321
[15] Hegerfeldt G C 1994Phys. Rev. Lett.72 596
[16] Gradshtein I S and Ryzhik I M 1988 Tables of Integrals, Series and Products(New York: Academic)
[17] Berestetskii V B, Lifshitz E M and Pitaevskii L P 1982Quantum Electrodynamics(Oxford: Pergamon)
[18] Berezinskii V L 1974 Sov. Phys.–JETP38 620
[19] Yoo K M and Alfano R R 1989Phys. Rev.B 39 5806
[20] Ya Chernyak V, Grigorishin K I, Ogievetsky E I and Agranovich V M 1992Solid State Commun.84 209–15


